MASS EXCHANGE BETWEEN SPHERICAL BODIES
AND A FLUID STREAM

G. A. Aksel'rud UDC 532.7

A solution of the problem of determining the mass-exchange coefficient between the surface
of a sphere and a liquid flowing over the sphere at low Reynolds number (second approxima-
tion) is presented.

In 1952, the author and V, G. Levich independently obtained the following equation [1-3]:
Nu .
io,l/,—m_ = 0.99 13/Re, {1)

Pr

which is valid for Re <1. The author used a diffusion integral relation governing the thickness of the dif-
fusion layer:
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and the velocity distribution was determined from the known Stokes solution for the stream function
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Recently, Van Dyke [4] obtained a second approximation to describe the fluid flow near a sphere
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The possibility was therefore disclosed for obtaining the second approximation in the solution of the
mass-exchange problem,

It follows from (3) that for Re = 16 the tangential velocity near a sphere vy is positive on the whole
surface of the sphere, If Re> 16, this velocity takes on negative values at the rear part of the sphere for
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In the first case we can follow the growth of the diffusion layer on the whole surface (0 < 8 = 7), on
the major portion of the surface (0 = g = #4) in the second case; the conditions of diffusion in the domain
64 = 0 = 7 are distinguished by extreme complexity because of the presence of a stationary vortex therein
[4]. However, the mass exchange of the part of the surface with ¢ > 6, can be neglected because this

part comprises less than 12,5% of the whole surface of the sphere, and because of the insignificant
tangential velocities in this domain.
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Fig. 1. Critical dependences
_.*\ 3 - governing the mass-exchange
©2 coefficient: 1)from (1);2) from
(7);(8), 3) from (9).
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The solution of the problem under consideration is performed as follows,

1. The tangential velocity Vo and its value within the diffusion layer, i.e., forr=a +y, y«a, are
determined from (3).

2. The concentration distribution in the diffusion layer is represented by the relationship
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which satisfies the boundary conditions
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3. Integration in confor‘mity with (2) and subsequent solution of the differential equation determine
the diffusion-layer thickness, and its distribution over the surface
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4. The flux of material from the sphere surface is
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and it determines the magnitude of the mass-exchange coefficient
I=Fk(c,—c,) 2na® (1 — cos ).
The final result is

Re 16, m> 1,
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Re >16; m<1;
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Expanding the elliptic integrals in (7) in series and retaining three terms in each, we obtain result more
convenient for use
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The results (1), (7), (8), (9) are presented in Fig. 1 in logarithmic coordinates, The values determined from
(9) exceed the exact value (7) by not more than 5%,

NOTATION

a sphere radius;

cy concentration in the main mass of solution;
concentration within the diffusion layer;
concentration on the sphere surface;
complete elliptic integral of the first kind;
mass-exchange coefficient;
a parameter defined by (4);
velocity of fluid motion around the sphere;
tangential velocity component;
a parameter (see (5) and (6));
distance from the sphere surface in a radial direction 0 = y = §;
diffusion coefficient;
radius-vector of a point outside the sphere;
flux of material from*the sphere surface {(quantity of material lostbythe sphere in unittime);
‘diffusion-layer thickness;
angular distance from the forward stagnation point;
the same at points of vertical-zone formation;
kinematic viscosity;
stream function;

u=k-2¢/D  diffusion Nusselt number;

r=yp/D diffusion- Prandtl number;

e =TU.2a/v Reynolds number;

complete elliptic integral of the second kind,
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